Execution Time of Lambda-Terms via Non Uniform Semantics and Intersection Types

نویسنده

  • Daniel de Carvalho
چکیده

The relational semantics for Linear Logic induces a semantics for the type free Lambda Calculus. This one is built on non-idempotent intersection types. We give a principal typing property for this type system.We then prove that the size of the derivations is closely related to the execution time of lambda-terms in a particular environment machine, Krivine’s machine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intersection Types for Normalization and Verification

One of the basic principles in typed lambda calculi is that typable lambda terms are normalizable. Since the converse direction does not hold for simply typed lambda calculus, people have been studying its extensions. This gave birth to the intersection type systems, that exactly characterize various classes of lambda terms, such as strongly/weakly normalizable terms and solvable ones (see e.g....

متن کامل

Execution Time of lambda-Terms via Denotational Semantics and Intersection Types

This paper presents a work whose aim is to obtain information on execution time of λ-terms by semantic means. By execution time, we mean the number of steps in a computational model. As in [Ehrhard and Regnier 2006], the computational model considered in this paper will be Krivine’s machine, a more realistic model than β-reduction. Indeed, Krivine’s machine implements (weak) head linear reducti...

متن کامل

Non uniform (hyper/multi)coherence spaces

In (hyper)coherence semantics, proofs/terms are cliques in (hyper)graphs. Intuitively, vertices represent results of computations and the edge relation witnesses the ability of being assembled into a same piece of data or a same (strongly) stable function, at arrow types. In (hyper)coherence semantics, the argument of a (strongly) stable functional is always a (strongly) stable function. As a c...

متن کامل

Intersection Types for the λμ-Calculus

We introduce an intersection type system for the pure λμ-calculus, which is invariant under subject reduction and expansion. The system is obtained by describing Streicher and Reus’s denotational model of continuations in the category of omega-algebraic lattices via Abramsky’s domain logic approach. This provides at the same time an interpretation of the type system and a proof of the completen...

متن کامل

Execution Time of λ-Terms via Denotational Semantics and Intersection Types

This paper presents a work whose aim is to obtain information on execution time of λ-terms by semantic means. By execution time, we mean the number of steps in a computational model. As in [Ehrhard and Regnier 2006], the computational model considered in this paper will be Krivine’s machine, a more realistic model than β-reduction. Indeed, Krivine’s machine implements (weak) head linear reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006